Montag, den 08. April 2019 um 04:34 Uhr

Katalysatorforschung für Solare Brennstoffe: Amorphes Molybdänsulfid funktioniert am besten

Für die Produktion von Wasserstoff mit Sonnenlicht werden effiziente und preisgünstige Katalysatoren gebraucht. Molybdänsulfide gelten als gute Kandidaten. Nun hat ein Team am HZB aufgeklärt, welche Prozesse während der Katalyse an Molybdänsulfiden ablaufen und wieso ausgerechnet amorphes Molydänsulfid am besten funktioniert. Die Ergebnisse wurden im Fachjournal ACS-Catalysis veröffentlicht.

Mit Sonnenlicht lässt sich nicht nur Strom erzeugen, sondern auch Wasserstoff. Wasserstoff ist ein klimaneutraler Brennstoff, der Energie chemisch speichert und bei Bedarf wieder abgibt: entweder direkt über Verbrennung (wobei nur Wasser entsteht) oder als elektrische Energie in einer Brennstoffzelle. Doch um mit Sonnenlicht Wasserstoff zu produzieren, werden Katalysatoren benötigt, die die elektrolytische Aufspaltung von Wasser in Sauerstoff und Wasserstoff beschleunigen.

Eine besonders interessante Materialklasse für Katalysatoren für die Wasserstoff­ent­wicklung sind Molybdänsulfide (MoSx). Sie sind deutlich günstiger als Katalysatoren aus Platin oder Ruthenium. In einer umfangreichen Studie hat ein Team um Prof. Dr. Sebastian Fiechter am HZB-Institut für Solare Brennstoffe nun eine Reihe von Molybdänsulfid-Schichten hergestellt und untersucht. Die Proben wurden bei verschiedenen Temperaturen auf einem elektrisch leitenden Substrat abgeschieden, von Raumtemperatur (RT) bis 500 °C. Dabei ändern sich mit zunehmender Abscheidungstemperatur Morphologie und Struktur der Schichten (siehe TEM-Bilder). Während bei höheren Temperaturen kristalline Bereiche entstehen, ist Molybdänsulfid, das bei Raumtemperatur abgeschieden wurde, amorph. Genau diese amorphen Molybdänsulfidproben besitzen nach einer Aktivierungsphase die höchste katalytische Aktivität.

Dabei setzt ein Katalysator aus amorphem Molybdänsulfid bei der Elektrolyse von Wasser nicht nur Wasserstoff, sondern in der Anfangsphase auch Schwefelwasser­stoffgas frei. Der Schwefel dafür musste aus dem Katalysatormaterial stammen, das bei diesem Prozess seine katalytische Aktivität erstaunlicherweise deutlich verbessert. Fiechter und sein Team haben diesen Prozess nun gründlich unter die Lupe genommen und schlagen eine Erklärung für diesen Befund vor:

Sie untersuchten Proben aus amorphen Molybdänsulfid im Einsatz als Katalysator bei der Wasserspaltung mit verschiedenen spektroskopischen Methoden, darunter auch in-situ Raman-Spektroskopie. Diese Messungen zeigen, dass sich in amorphen Molybdänsulfid-Proben durch das Austreten von Schwefel aus Molybdänclustern mit der Zeit nanokristalline Bereiche von Molydändisulfid (MoS2) bilden. Zeitgleich entsteht immer weniger Schwefelwasserstoff, so dass die Wasserstoffproduktion dominant wird.

„Wir können aus den Messdaten ableiten, dass sich durch das Austreten von Schwefel schwefelarme Bereiche mit nanokristallinen MoS2-Inseln bilden. Diese Inseln fungieren als katalytisch aktive Teilchen“, erklärt Fanxing Xi, die die Messungen im Rahmen ihrer Promotion durchgeführt hat. „Diese Einblicke können dazu beitragen, die Aktivität und Stabilität dieses vielversprechenden Katalysators für die Wasserstoffentwicklung im Prozess der Wasserspaltung weiter zu verbessern und das Material an einen mit Sonnenlicht betriebenen Elektrolyseur anzukoppeln“, sagt Fiechter.


Den Artikel finden Sie unter:

https://www.helmholtz-berlin.de/pubbin/news_seite?nid=20429;sprache=de;seitenid=1

Quelle: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (04/2019)


Publikation:
ACS Catalysis (2019): Structural Transformation Identification of Sputtered Amorphous MoSx as an Efficient Hydrogen-Evolving Catalyst during Electrochemical Activation; Fanxing Xi, Peter Bogdanoff, Karsten Harbauer, Paul Plate, Christian Höhn, Jörg Rappich, Bin Wang, Xiaoyu Han, Roel van de Krol, and Sebastian Fiechter.
Doi: 10.1021/acscatal.8b04884

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.