Dienstag, den 09. März 2021 um 04:10 Uhr

Instrument an BESSY II zeigt, wie Licht MoS2-Dünnschichten katalytisch aktiviert

Dünnschichten aus Molybdän und Schwefel gehören zu einer Klasse von Materialien, die als (Photo)-Katalysatoren infrage kommen. Solche günstigen Katalysatoren werden gebraucht, um mit Sonnenenergie auch den Brennstoff Wasserstoff zu erzeugen. Allerdings sind sie bislang noch wenig effizient. Ein neues Instrument an BESSY II am Helmholtz-Zentrum Berlin (HZB) zeigt nun, wie ein Lichtpuls die Oberflächeneigenschaften der Dünnschicht verändert und das Material katalytisch aktiviert.

MoS2-Dünnschichten sind aus abwechselnden Lagen von Molybdän-Atomen und Schwefel-Atomen aufgebaut, die sich zu zweidimensionalen Schichten übereinanderlegen. Das Material ist ein Halbleiter. Aber schon ein blauer Lichtpuls mit überraschend geringer Intensität genügt, um die Eigenschaften der Oberfläche zu verändern und sie metallisch zu machen. Dies hat nun ein Team an BESSY II gezeigt.

Das Spannende daran: In dieser metallischen Phase sind die MoS2-Schichten auch katalytisch besonders aktiv. Sie lassen sich dann zum Beispiel als Katalysatoren für die Spaltung von Wasser in Wasserstoff und Sauerstoff einsetzen. Damit könnten sie als preiswerte Katalysatoren die Produktion von Wasserstoff ermöglichen – einem Energieträger, dessen Verbrennung kein CO2, sondern nur Wasser produziert.

Die Physikerin Dr. Nomi Sorgenfrei und ihr Team haben an BESSY II ein neues Instrument aufgebaut, um die Veränderungen an den Proben durch Bestrahlung mit ultrakurzen, schwachen Lichtpulsen mithilfe von zeitaufgelöster Elektronenspektroskopie für die chemische Analytik (trESCA) exakt zu vermessen. Diese Lichtpulse werden an BESSY II mit Femtoslicing erzeugt und sind daher von geringer Intensität. Das neue Instrument „SurfaceDynamics@FemtoSpeX“ kann auch aus diesen schwachen Lichtpulsen in kurzer Zeit aussagekräftige Messdaten von Elektronenenergien, Oberflächenchemie und zeitlichen Veränderungen gewinnen.

Die Analyse der experimentellen Daten zeigte, dass der Lichtpuls zu einer vorübergehenden Ladungsakkumulation an der Oberfläche der Probe führt, was den Phasenübergang an der Oberfläche von einem halbleitenden Zustand in einen metallischen Zustand auslöst.

„Dieses Phänomen sollte auch in anderen Vertretern dieser Materialklasse von p-dotierten halbleitenden Dichalkogeniden auftreten, sodass sich daraus Möglichkeiten ergeben, um die Funktionalität und katalytische Aktivität gezielt zu beeinflussen“, erklärt Sorgenfrei.


Den Artikel finden Sie unter:

https://www.helmholtz-berlin.de/pubbin/news_seite?nid=22585;sprache=de;seitenid=1

Quelle: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (03/2020)


Publikation:
Photo-driven transient picosecond top-layer semiconductor to metalic phase transition in p-doped MoS2
Nomi L. A. N. Sorgenfrei, Stefan Neppl, Raphael M. Jay, Danilo Kühn, Erika Giangrisostomi, Hikmet Sezen, Ruslan Ovsyannikov, Svante Svensson, and Alexander Föhlisch
DOI: 10.1002/adma.202006957
OPEN ACESS

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.