Donnerstag, den 14. Oktober 2021 um 04:58 Uhr

Ultraschnell und gekoppelt – atomare Schwingungen im Quantenmaterial Bornitrid

Aus wenigen Atomschichten bestehende Materialien zeigen Eigenschaften, die durch die Quantenphysik bestimmt sind. In solchen Schichtpaketen lassen sich mit infrarotem Licht Schwingungen der Atome auslösen.
Für das Quantenmaterial Bornitrid wurde jetzt erstmals nachgewiesen, dass ultraschnelle atomare Schwingungen innerhalb der Schichten, sog. transversal optische Phononen, direkt an Bewegungen der Schichten gegeneinander koppeln. Für ein Zeitintervall von ca. 20 Pikosekunden bewirkt diese Kopplung eine Frequenzverschiebung der optischen Phononen und der zugehörigen optischen Resonanz. Dieses Verhalten ist eine genuine Eigenschaft des Quantenmaterials und von Interesse für Anwendungen in der Optoelektronik bei höchsten Frequenzen.

Hexagonales Bornitrid besteht aus Schichten, in denen Sechsringe aus gebundenen Bor- und Stickstoffatomen regelmäßig angeordnet sind (Abb. 1). Zwischen benachbarten Schichten besteht eine wesentlich schwächere Kopplung über die sog. Van der Waals- Wechselwirkung. Schwingungen der Bor- und Stickstoffatome in einer Ebene, sog. transversal optische (TO) Phononen, besitzen mit ca. 40 Terahertz (THz, 4×1013 Schwingungen pro Sekunde) eine 10 bis 100fach höhere Frequenz als Bewegungen der Ebenen gegeneinander, die sog. Scher- und Atmungsschwingungen. Über ein Zusammenspiel dieser unterschiedlichen Bewegungen und ihre Lebensdauer nach optischer Anregung war bisher nahezu nichts bekannt.

Im Rahmen einer internationalen Zusammenarbeit haben ForscherInnen aus Berlin, Montpellier, Nantes, Paris und Ithaca (USA) detaillierte experimentelle und theoretische Ergebnisse zur Dynamik gekoppelter Phononen vorgelegt. Wie sie in einer jetzt erschienenen Veröffentlichung berichten (Physical Review B 104, L140302 (2021)), besitzen TO-Phononen in einem Stapel von 8 bis 9 Bornitridschichten eine Lebensdauer von 1.2 ps (1 ps = 10-12 s), während Scher- und Atmungsschwingungen für ca. 40 ps angeregt bleiben (Abb. 2b). Diese Lebensdauern wurden in Anrege-Abtastexperimenten mit Femtosekundenimpulsen direkt gemessen. Sie stimmen sehr gut mit theoretischen Berechnungen überein, die auf einer Analyse der Phonon-Zerfallskanäle beruhen.

Die Anregung von Scher- und Atmungsschwingungen, die an TO-Phononen koppeln, führt zu einer charakteristischen spektralen Verschiebung der TO-Phonon-Resonanz in den optischen Spektren (Abb. 2a). Die theoretische Analyse liefert die Kopplungsenergie zwischen den Schwingungen und zeigt, dass die entsprechende Kopplung in einem Bornitrid-Volumenkristall aus einer sehr hohen Zahl atomarer Schichten vernachlässigbar klein ist. Das beobachtete gekoppelte Schwingungsverhalten ist damit eine spezifische Eigenschaft des Quantenmaterials.

Die nach Anregung der Phononen beobachtete Verschiebung ihres Reflexionsspektrums stellt ein nichtlinear-optisches Verhalten dar, das sich mit moderaten optischen Leistungen hervorrufen lässt. Es ist von Interesse für optoelektronische Anwendungen im Giga- bis Terahertz-Frequenzbereich, etwa für optische Schalter und Modulatoren.


Den Artikel finden Sie unter:

https://mbi-berlin.de/de/forschung/highlights/details/ultrafast-and-coupled-atomic-vibrations-in-the-quantum-material-boron-nitride

Quelle: Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie im Forschungsverbund Berlin e.V. (10/2021)


Publikation:
Ultrafast nonlinear phonon response of few-layer hexagonal boron nitride
Taehee Kang, Jia Zhang, Achintya Kundu, Klaus Reimann, Michael Woerner, Thomas Elsaesser, Bernard Gil, Guillaume Cassabois, Christos Flytzanis, Giorgia Fugallo, Michele Lazzeri, Ryan Page, and Debdeep Jena
Phys. Rev. B 104, L140302 – Published 11 October 2021
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.104.L140302

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.