Mittwoch, den 17. Dezember 2014 um 05:59 Uhr

Gezielte Oxidation steuert Zellfunktionen

Wasserstoffperoxid ist nicht nur, wie lange vermutet, ein gefährliches Stoffwechselprodukt, das Zellbestandteile durch Oxidation schädigen kann: Wissenschaftler aus dem Deutschen Krebsforschungszentrum fanden heraus, wie das kleine Molekül in der Zelle auch gezielt Signale überträgt: Bestimmte Enzyme (Peroxiredoxine) fangen freies Wasserstoffperoxid ab und nutzen es, um damit spezifisch andere Proteine zu oxidieren. Auf diese Weise reguliert Wasserstoffperoxid etwa die Aktivität eines entzündungsfördernden Transkriptionsfaktors und steuert damit wichtige Zellfunktionen.

Wasserstoffperoxid (H2O2) ist ein starkes Oxidationsmittel: Es blondiert Haare, bleicht Zähne und desinfiziert Wunden. Aber H2O2 entsteht auch im Körper selbst, unter anderem als Stoffwechselprodukt der Zellatmung. Es zählt zur Gruppe der reaktiven Sauerstoffspezies (engl. reactive oxygen species, ROS), die im Ruf stehen, Zellen und deren Bestandteile zu schädigen. So sollen sie für die Entstehung von Krebs, degenerativen Krankheiten und sogar für das Altern mitverantwortlich sein. Tatsächlich enthalten Körperzellen große Mengen von H2O2-abbauenden Enzymen, sogenannte Peroxiredoxine – als Schutz gegen das vermeintlich gefährliche H2O2, so wurde bislang vermutet.

Vor etwa zehn Jahren brachten Forschungsergebnisse dieses schlichte Bild ins Wanken: „Unter den meisten Bedingungen ist H2O2 gar kein unerwünschtes Nebenprodukt, sondern ein essentieller Botenstoff, der die Reaktion von Körperzellen auf Signale von außen, wie etwa Hormone oder Wachstumsfaktoren, maßgeblich mitbestimmt“, erklärt PD Dr. Tobias Dick vom Deutschen Krebsforschungszentrum. „Heute wissen wir, dass das körpereigene H2O2 unabdingbar ist für die Signalverarbeitung im gesunden Organismus.“ H2O2 überträgt Signale, indem es bestimmte Proteine an bestimmten Stellen oxidiert und damit entweder an- oder abschaltet. Tobias Dick und seine Mitarbeiter konnten nun erstmals zeigen, wie diese Signalübertragung durch gezielte Oxidation in menschlichen Zellen auf molekularer Ebene funktioniert.

Wissenschaftlern galt dieser Mechanismus lange Zeit als Rätsel: Ein signalübertragendes Molekül muss spezifisch wirken. Wie kann H2O2, kaum größer als ein Wassermolekül (H2O), bestimmte Proteine gezielt oxidieren, dabei aber andere gänzlich unberührt lassen? Und warum werden die relativ geringen Mengen H2O2, die als Signalstoff produziert werden, nicht sofort durch die Peroxiredoxine abgefangen, bevor H2O2 mit Zielproteinen reagieren kann?

Wie Dicks Team nun zeigte, ist die Lösung des Problems so einfach wie elegant: Die DKFZ-Forscher wiesen nach, dass H2O2 tatsächlich sofort nach seiner Entstehung von Peroxiredoxinen abgefangen wird. Doch was dann folgt, war unerwartet: Die Peroxiredoxine verwendeten das H2O2, um damit andere Proteine zu oxidieren. Sie arbeiten also tatsächlich als Fänger für H2O2-Moleküle – aber nicht um deren oxidative Wirkung zu verhindern, sondern um diese in geregelten Bahnen auf ganz bestimmte Ziele zu lenken. Im Gegensatz zu dem winzigen H2O2-Molekül können Peroxiredoxine spezifisch mit anderen Proteinen wechselwirken. So sind sie in der Lage, andere Proteine zielgenau zu oxidieren, und damit deren Funktion zu steuern. Die oxidative Veränderung der Zielproteine ist dabei nur vorübergehend und stellt keinen Schaden dar.

Die Forscher demonstrierten das Prinzip an einem konkreten Beispiel: Als prominentes Zielprotein eines Peroxiredoxins identifizierten sie den Transkriptionsfaktor STAT3, der entzündliche Prozesse steuert und die Entstehung von Tumoren begünstigen kann. Sie konnten zeigten, dass das Peroxiredoxin die oxidative Wirkung des H2O2 an STAT3 weitergibt. Der Oxidationszustand von STAT3 bestimmte wiederum, wie effizient der Transkriptionsfaktor die Genaktivität steuert. Entgegen aller bisherigen Annahmen ließ sich eine direkte und spontane Oxidation von STAT3 durch freies H2O2 ausschließen.

„Tumorzellen produzieren mehr H2O2 und nutzen oxidative Signale stärker als normale Zellen, um damit ihr Wachstum anzukurbeln. Da wir jetzt die Peroxiredoxine als wichtige Spieler bei der spezifischen Oxidation kennen, können wir hier ansetzten, um in krebsrelevante oxidative Signale einzugreifen“, erläutert Mirko Sobotta, der Erstautor der Arbeit.

Die neue Studie löst nicht nur ein grundlegendes Problem der Biologie. Sie enthüllt auch eine neue Ebene der Regulation des krebsrelevanten Transkriptionsfaktors STAT3. Das Forschungsprojekt ist Teil des Sonderforschungsbereichs 1036, der im Rahmen der DKFZ-ZMBH Allianz grundlegende Mechanismen der zellulären Regulation erforscht.


Den Artikel finden Sie unter:

http://www.dkfz.de/de/presse/pressemitteilungen/2014/dkfz-pm-14-64-Gezielte-Oxidation-steuert-Zellfunktionen.php

Quelle: Deutsches Krebsforschungszentrum (12/2014)


Publikation:
Sobotta, M.C., Liou, W., Stöcker, S., Talwar, D., Oehler, M., Ruppert, T., Scharf, A.N., and Dick, T.P. (2014). Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nature Chemical Biology 2014, DOI: 10.1038/nchembio.1695.
Zurück nach Oben

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.