Freitag, den 04. September 2015 um 07:23 Uhr

Molekular-Modelle weisen Weg zum Schokoladenschmelz

Für viele ist sie unwiderstehlich und liebste Süßigkeit: die Schokolade. Was zu ihrem Erfolg beigetragen hat, ist vermutlich nicht nur ihr Geschmack, sondern ebenso der zerfließende Schmelz, den das Conchieren erreicht und der Zusatz von Lecithin. Wissenschaftler der TUM konnten erstmals klären, wie dabei alle Zutaten auf molekularer Ebene miteinander interagieren und was der Schokolade zu ihrer Textur verhilft. 

„Es gibt viele Hypothesen, wie das Lecithin bei der Produktion von Schokolade wirkt“, erläutert Professor Heiko Briesen vom TUM-Lehrstuhl für Systemverfahrenstechnik die Studie – doch was genau auf der Ebene der Moleküle passiert, war bislang unklar. Ebenso war offen, welche Sorte Lecithin dabei am vorteilhaftesten die Fließfähigkeit der Schokoladenmasse beeinflusst. Um sich dem zu nähern, haben TUM-Wissenschaftler mit einer so genannten molekulardynamischen Simulation gearbeitet. Diese Simulationen nutzen Modelle, welche die Wechselwirkungen von Atomen und Molekülen nachbilden.

Verbindung Lecithin mit Zucker ist entscheidend

 Entscheidend bei ihren Untersuchungen seien die vorab gestellten Fragen gewesen, sagt Professor Briesen: „Unsere Frage war, wie stark binden unterschiedliche Lecithine an die Zuckerpartikel in der Schokolade?“ Es stellte sich heraus, dass die verschiedenen Lecithine – es wurden sechs verschiedene beobachtet – unterschiedlich gut mit dem Zucker „anbandelten“.

Molekulardynamik kann Lebensmittelforschung unterstützen

Für die Schokoladenherstellung liefern die Erkenntnisse der TUM-Wissenschaftler wertvolle Hinweise, zumal bislang hauptsächlich Lecithin aus Sojabohnen verwendet wird. Da das Angebot gentechnisch unveränderten Sojas jedoch abnimmt, kann die molekulare Simulation künftig Lebensmittelchemiker vor langwierigen Trial-and-Error-Tests bewahren, welches Lecithin sie zur Schokoladenherstellung wählen sollten. „Ich bin zuversichtlich, dass die Molekulardynamik in Zukunft die Lebensmittelforschung stark unterstützen wird“, sagt Briesen.


Den Artikel finden Sie:

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32591/

Quelle: Technische Universität München (09/2015)


Publikation:
M. Kindlein, M. Greiner, E. Elts und H. Briesen: Interactions between phospholipid head groups and a sucrose crystal surface at the cocoa butter interface, Journal of Physics 2015.
Die Studie im Web: http://iopscience.iop.org/article/10.1088/0022-3727/48/38/384002

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.