Volltextsuche

Top Suchbegriffe



Dienstag, den 11. Oktober 2022 um 04:41 Uhr

Grüner Wasserstoff: Raschere Fortschritte durch moderne Röntgenquellen

Mit der Elektrokatalyse von Wasser lässt sich elektrische Energie aus Sonne oder Wind zur Erzeugung von grünem Wasserstoff nutzen und so speichern. Ein Überblicksbeitrag in der Fachzeitschrift Angewandte Chemie zeigt, wie moderne Röntgenquellen wie BESSY II die Entwicklung von passenden Elektrokatalysatoren vorantreiben können. Insbesondere lassen sich mit Hilfe von Röntgenabsorptionsspektroskopie die aktiven Zustände von katalytisch aktiven Materialien für die Sauerstoffentwicklungsreaktion bestimmen. Dies ist ein wichtiger Beitrag, um effiziente Katalysatoren aus günstigen und weit verbreiteten Elementen zu entwickeln.

Grüner Wasserstoff ist ein Energieträger mit Zukunft. Er wird durch die elektrolytische Aufspaltung von Wasser mit Energie aus Wind oder Sonne gewonnen und speichert diese Energie in chemischer Form. Damit die Aufspaltung von Wassermolekülen leichter (und mit weniger Energieeinsatz) gelingt, sind die Elektroden mit katalytisch aktiven Materialien beschichtet. Dr. Marcel Risch untersucht mit seinem Team in der Nachwuchsgruppe "Gestaltung des Sauerstoffentwicklungsmechanismus" die Sauerstoffentwicklung bei der Elektrokatalyse von Wasser. Denn vor allem die Sauerstoffentwicklung muss für eine wirtschaftliche Wasserstoffproduktion noch effizienter ablaufen.

Eine spannende Materialklasse für Elektrokatalysatoren sind Manganoxide, die in vielen verschiedenen strukturellen Varianten vorkommen. „Ein entscheidendes Kriterium für die Eignung als Elektrokatalysator ist die Oxidationszahl des Materials und wie sie sich im Lauf der Reaktion verändert“, erläutert Risch. Bei den Manganoxiden gibt es auch hierbei eine große Vielfalt.

Informationen über die Oxidationszustände bringt die Röntgenabsorptionsspektroskopie (XAS): Röntgenquanten mit passender Energie regen dabei Elektronen auf den innersten Schalen an, die diese Quanten absorbieren. Je nach Oxidationszahl kann man diese Absorption bei unterschiedlichen Anregungsenergien beobachten. Das Team um Risch hat eine Elektrolyse-Zelle konstruiert, die XAS-Messungen während der Elektrolyse ermöglicht.

„Mit der Röntgenabsorptionsspektroskopie können wir nicht nur die Oxdationszahlen ermitteln, sondern auch Korrosionsprozesse oder Phasenveränderungen im Material beobachten“, sagt Risch. Kombiniert mit elektrochemischen Messungen ergibt sich aus den Messdaten damit ein deutlich besseres Verständnis des Materials während der Elektrokatalyse. Die benötigte hohe Intensität der Röntgenstrahlung steht allerdings nur an modernen Synchrotronlichtquellen zur Verfügung. In Berlin betreibt das HZB dafür BESSY II. Weltweit gibt es etwa 50 solcher Lichtquellen für die Forschung.

Risch sieht noch großes Potenzial für die Anwendung von Röntgenabsorptionsspektroskopie, insbesondere was die Zeitskalen der Beobachtung betrifft. Denn typische Messzeiten betragen einige Minuten pro Messung. Elektrokatalytische Reaktionen finden jedoch auf kürzeren Zeitskalen statt. „Wenn wir bei der Elektrokatalyse zuschauen könnten während sie passiert, könnten wir wichtige Details besser verstehen “ , meint Risch. Mit diesem Wissen würden sich preiswerte und umweltfreundliche Katalysatoren rascher entwickeln lassen. Andererseits finden viele „Alterungsprozesse“ binnen Wochen oder Monaten statt. „Wir könnten zum Beispiel in regelmäßigen Abständen die gleiche Probe immer wieder untersuchen, um diese Prozesse zu verstehen“, rät Risch. Damit ließen sich zusätzlich noch langlebigere Elektrokatalysatoren entwickeln.


Den Artikel finden Sie unter:

https://www.helmholtz-berlin.de/pubbin/news_seite?nid=24127&sprache=de&seitenid=1

Quelle: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (10/2022)


Publikation:
Angewandte Chemie 2022: What X-ray absorption spectroscopy can tell us about the active state of earth-abundant electrocatalysts for the oxygen evolution reaction
Marcel Risch, Dulce M. Morales, Javier Villalobos, Denis Antipin
DOI: 10.1002/ange.202211949

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.